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ABSTRACT

A new method for reconstruction of coronal magnetic fields as force-free fields (FFFs) is presented.

Our method employs poloidal and toroidal functions to describe divergence-free magnetic fields. This

magnetic field representation naturally enables us to implement the boundary conditions at the photo-

spheric boundary, i.e., the normal magnetic field and the normal current density there, in a straightfor-

ward manner. At the upper boundary of the corona, a source-surface condition can be employed, which

accommodates magnetic flux imbalance at the bottom boundary. Although our iteration algorithm

is inspired by extant variational methods, it is non-variational and requires much less iteration steps

than most of them. The computational code based on our new method is tested against the analytical

FFF solutions by Titov & Démoulin (1999). It is found to excel in reproducing a tightly wound flux

rope, a bald patch and quasi-separatrix layers with a hyperbolic flux tube.
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1. INTRODUCTION

To understand physical processes in the solar corona

and their connection with dynamics of the heliosphere,

information about the coronal magnetic field is indis-

pensable. Measurements of coronal magnetic fields have

been made either using radio observations (Alissan-

drakis & Chiuderi Drago 1995; White et al. 1991; Brosius

et al. 1997; Lee et al. 1998; White 2005) or by spectropo-

larimetry of near infrared lines (Lin et al. 2004; Tomczyk

et al. 2008; Judge et al. 2013; Plowman 2014; Dima &

Schad 2020). These techniques as of today, however, can

only provide a coarse 2D map of the line-of-sight field

strength or a pointwise vector field. Coronal magnetic

field strengths have also been indirectly estimated from

observations of coronal loop oscillations (Nakariakov &

Ofman 2001; Van Doorsselaere et al. 2008) and of coro-

nal mass ejections (CMEs) (Jang et al. 2009; Gopal-

swamy et al. 2012). These indirect measurements are

too locally confined to give us a geometrical picture of

the coronal magnetic field. On the other hand, the mag-
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netic field vectors in the photosphere have been mea-

sured by spectropolarimetry with a rather sufficiently

high resolution and accuracy to produce a vector mag-

netogram, which is a 2D map of the 3D vector field

(Beckers 1971; Harvey 1985; Solanki 1993; Lites 2000).

With photospheric vector magnetograms available,

there have been efforts to reconstruct coronal magnetic

fields. Although the real corona is fully dynamic, the
magnetic field that can be generated by one vector mag-

netogram without knowing its prehistory is a static field.

A magnetohydrostatic field under gravity requires the

information of pressure (and temperature if not isother-

mal) at the photospheric level in addition to the vector

magnetogram (Grad & Rubin 1958; Wiegelmann et al.

2007; Zhu & Wiegelmann 2018), but such information is

not readily available yet. Since the plasma β, the ratio

of plasma pressure and magnetic pressure, in the corona,

especially in active regions, is much less than unity (Iwai

et al. 2014, cf. Rodŕiguez Gómez et al. 2019), the ap-

proximation of coronal magnetic field to a force-free field

(FFF) has been prevalent. An FFF in a domain V is a

vector field B such that

J ×B = 0 ⇒ J = ∇×B = α(r)B , (1)

∇ ·B = 0 . (2)

ar
X

iv
:2

20
6.

07
18

9v
1 

 [
as

tr
o-

ph
.S

R
] 

 1
4 

Ju
n 

20
22

mailto: gchoe@khu.ac.kr
songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang




2 Yi et al.

As in equation (1), we will omit constant coefficients in

Maxwell’s equations by a proper normalization through-

out this paper. From equations (1) and (2), we have

B · ∇α = 0 (3)

i.e., α is constant along each field line. If the scalar field

α is constant everywhere in V , equations (1) and (2)

form a linear vector Helmholtz equation

∇2B + α2B = 0 , (4)

and its solution, an FFF with a constant α, is a linear

force-free field (Aly 1992) . If α at the boundary ∂V

is non-constant, the scalar field α(r) for r ∈ V is an

unknown, and such an FFF is a nonlinear force-free field

(NLFFF). Since the scalar α in the photosphere is far

from constant, reconstruction of a coronal magnetic field

is seeking an NLFFF.

The earliest attempts of constructing an NLFFF used

an algorithm, in which the three components of the vec-

tor field are computed from the photospheric bound-

ary successively upward plane by plane (Nakagawa 1974;

Wu et al. 1985, 1990) as if a time-dependent hyperbolic

partial differential equation (e.g., an advection equa-

tion) were solved marching along the time coordinate,

whose role is taken by the vertical coordinate z in the

FFF solver. As already pointed out by Grad & Ru-

bin (1958), a magnetohydrostatic (MHS) equation has

imaginary characteristics like an elliptic equation (e.g.,

Poisson equation) as well as real characteristics like a hy-

perbolic equation. Thus, solving a force-free equation,

which is semi-elliptic, as a Cauchy problem is ill-posed so

that the successive integration algorithm cannot avoid

exponentially growing errors as going up to a higher al-

titude (Aly 1989; Amari et al. 1997; McClymont 1997).

For this reason, the algorithm is now seldom used, but it

has left a legacy of the much-used term “extrapolation.”

In this paper, we will use the term “reconstruction” in-

stead of the somewhat misleading “extrapolation” to re-

fer to solving for a coronal magnetic field with certain

boundary conditions.

Among a variety of coronal NLFFF solvers that have

been proposed so far (for a review see Aly & Amari

2007; Wiegelmann & Sakurai 2021), there are two major

groups of methods that are practically used these days.

They are Grad-Rubin methods (current-field iteration

methods) and variational methods. The former were

originally proposed by Grad & Rubin (1958) and have

been applied in diverse formulations and algorithms

(Sakurai 1981; Amari et al. 1999, 2006; Wheatland

2006). The Grad-Rubin methods in common employ an

iteration procedure, in which the domain is first loaded

with a field-aligned electric current Jn+1 = αnBn sat-

isfying equation (3) for Bn at the iteration step n and

α = J · n̂/B · n̂ specified at the boundary points (foot-

points) having one sign of the normal field component

B · n̂ in ∂V , and then Bn+1 is updated by solving the

equation ∇×Bn+1 = Jn+1. Although the Grad-Rubin

problem, which is to solve equations (1)–(2) with Bn
given at every point of ∂V and α only in the part of

∂V with one sign of Bn, is known to be well-posed for

|α| < αm < ∞ (Bineau 1972; Boulmezaoud & Amari

2000), it has not yet been rigorously proved whether the

Grad-Rubin iteration procedure always converges to a

solution or not. However, numerical codes based on the

Grad-Rubin method have well been applied to real so-

lar problems demonstrating its usefulness (Bleybel et al.

2002; Régnier & Amari 2004; Régnier & Priest 2007;

Petrie et al. 2011; Mastrano et al. 2020).

In the variational methods, we solve for the magnetic

field that extremizes (actually minimizes) a certain func-

tional, which is usually a volume integral involving mag-

netic field, with certain boundary conditions and some

additional constraints if any. For example, if a certain

field line connectivity is imposed in V and the conju-

gate footpoints of each field line are fixed in ∂V , and if

the magnetic field in V is varied under the ideal mag-

netohydrodynamic (MHD) condition without footpoint

motions in ∂V so that the first two constraints may be

maintained, the magnetic field that minimizes the func-

tional W =
1

2

∫
V

B ·B dV , the total magnetic energy

in the domain V , is a force-free field (Grad & Rubin

1958; Chodura & Schlüter 1981). A sufficient condition

for δW ≤ 0 is that the fictitious plasma velocity is pro-

portional to the Lorentz force, i.e., v ∝ J × B. This

physically implies that the force-free state can be ap-

proached by removing the kinetic energy, into which the

excessive potential energy is converted, from the sys-

tem possibly by a hypothetical friction and/or viscous

diffusion. However, the problem of reconstructing coro-

nal magnetic field is quite different from that treated by

Chodura & Schlüter (1981). Since we do not know the

field connectivity beforehand, we need to lift the ideal

MHD condition and the constraint of field connectiv-

ity intentionally. Instead we have to impose the normal

current density Jn or three components of B at ∂V .

Then, an energy-decreasing evolution tends to deplete

magnetic helicity through its dissipation within the sys-

tem and transport through the boundary (Berger 1984).

Thus, maintaining Jn or B at ∂V requires winding up

field line footpoints there. Magnetofrictional methods

for coronal FFF reconstruction either alternate stressing

and relaxing steps explicitly (Mikić & McClymont 1994;
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Roumeliotis 1996; Jiao et al. 1997) or are inherently

equipped with a rather automatic re-stressing mecha-

nism (Valori et al. 2005, 2010; Inoue et al. 2014; Guo

et al. 2016; Jiang & Feng 2016). Since the magnetofric-

tional codes are more or less modified forms of MHD

solvers, they can employ free boundary conditions, also

called open boundary conditions, at the outer boundary

(lateral and top boundaries for a box-shaped domain)

(e.g., Valori et al. 2010). This flexibility in the outer

boundary conditions helps the system to evolve toward

a force-free state in most cases, but it is uncertain what

mathematical problem the resulting force-free state is

the solution of.

Another group of most widely used variational meth-

ods are the so-called optimization methods, in which the

functional

L =

∫
V

[
|J ×B|2

B2
+ (∇ ·B)

2

]
dV (5)

is to be minimized (Wheatland et al. 2000). Here the

nonzero ∇·B term arises not merely from numerical dis-

cretization errors, but rather from the non-divergence-

free form of ∂B/∂t required for reducing the functional

L1. The simplest choice of the boundary condition well-

posing this variational problem is ∂B/∂t = 0, which

can straightforwardly be implemented. There has been

a concern that a boundary condition giving all three

components of magnetic field results in an overspeci-

fied problem in contrast to the Grad-Rubin formula-

tion (Grad & Rubin 1958; Boulmezaoud & Amari 2000).

However, available observational data of photospheric

magnetic field and the boundary conditions employed

at the outer boundary (lateral and top boundaries for a

box-shaped domain) can hardly satisfy the compatibil-

ity relations of force-free fields (Aly 1989; Wiegelmann

& Sakurai 2021). The mathematically clear formula-

tion of the optimization methods tells that specifying all

three components of magnetic field at the entire bound-

ary works for minimizing the functional L in equation

(5) to a value, which is not necessarily zero, even if the

compatibility conditions are not met. This robustness

is a great merit of the optimization method as well as

its well-posedness as a variational problem. It is, how-

ever, a shortcoming of the method that the outcome

strongly depends on what B is given at the outer bound-

ary (Wiegelmann et al. 2006a).

1 Also in magnetofrictional methods, nonzero ∇·B terms are often
intentionally included in the induction equation to create paral-
lel electric field to induce magnetic reconnection and in the mo-
mentum equation to remove magnetic charge out of the system
(Valori et al. 2010; Inoue et al. 2014).

Besides the two classes of methods above, the bound-

ary integral method, also called boundary element

method, has also been used for practical purposes (He

& Wang 2008; He et al. 2020; Guo et al. 2019). This

method is quite similar to the Green function method

for partial differential equations, and a surface inte-

gral involving a reference function over the photospheric

boundary needs to be evaluated to obtain B at each

coronal point at every iteration step (Yan & Sakurai

2000; Yan & Li 2006). It is a merit of the boundary in-

tegral method that a finite computational domain does

not need to be set up, nor any artificial boundary condi-

tions at the outer boundary, because it assumes a semi-

infinite domain and a finite total magnetic energy in it.

All the aforementioned methods solve an FFF problem

with Bn and Jn or B as the bottom boundary condition.

This problem posing is purposed to reconstruct coronal

magnetic fields with vector magnetograms at hand. Our

new method presented here also tackles such problems.

However, FFF problems may be posed in different ways

depending on one’s interest. If it is necessary or desir-

able to impose a certain field connectivity, one can use

a magnetofrictional method using Euler potentials (e.g.,

Choe & Cheng 2002) or the fluxon method using thin,

piecewise linear flux tubes called fluxons for magnetic

field description (DeForest & Kankelborg 2007). In an-

other problem setting, an FFF solution was sought with

a flux rope initially placed at a desired location (van Bal-

legooijen 2004; van Ballegooijen et al. 2007). Here, only

Bn is imposed at the bottom boundary and Jn comes

out of the solution.

With such a variety of methods for coronal FFF re-

construction available today, we still want to present a

new method, which has the following properties.

(1) The magnetic field is described in a way ensuring

divergence-freeness.

(2) The boundary conditions at the bottom boundary,

Bz(z = 0), and Jz(z = 0), are straightforwardly

implemented once and for all.

(3) The lateral and top boundary conditions can ac-

commodate magnetic flux imbalance at the photo-

spheric boundary.

(4) Fewer iteration steps are required for convergence

than in most other methods.

(5) The numerical code is robust and equally operative

for simple and complex field geometries.

Let us make some remarks on the above items. The

most fundamental way of describing a divergence-free

(solenoidal) vector field is using a vector potential such
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that B = ∇×A. Imposing Bz at the boundary z = 0

would be readily done by fixing appropriate Ax and Ay
at the boundary once and for all. However, Jz or Bx
and By cannot be determined by the values of A at the

boundary only. Therefore, we have to adjust some com-

ponents of A at z = 0 at every iteration step in keeping

with the evolution inside the domain (e.g., Roumeliotis

1996). Thus, items (1) and (2) cannot be realized to-

gether when vector potentials being used. In this paper,

we describe magnetic field with two scalar functions Φ

and Az, named poloidal and toroidal functions, which

will be explained in detail in Section 2. Such a field de-

scription has never been tried in numerical computation

of solar magnetic fields whether static (FFF included) or

dynamic. In our formulation, the divergence-freeness of

B is guaranteed, and Bz is solely represented by Φ, and

Jz by Az. Thus, setting boundary conditions at z = 0

is done once and for all.

With regard to item (3), we note that the total posi-

tive and negative fluxes are generally not equal in mag-

nitude in the magnetogram of any active region. The

imbalanced fluxes are often coerced into achieving a bal-

ance by preprocessing (Wiegelmann et al. 2006b), or

are accommodated in FFF computations by assuming

certain symmetries across the lateral boundaries (see

Seehafer 1978; Otto et al. 2007, for two different pos-

sibilities). The latter remedies may make so much flux

escape from the computational domain that the connec-

tions between the subject domain and the surrounding

image domains overwhelm the field connections within

the subject domain only. In our new model, we set up

the lateral boundaries as rigid conducting walls so that

no magnetic flux may escape the domain through the

boundaries and field lines tangential to them may slide

freely during iterations. As for the top boundary, we em-

ploy a source surface condition, in which the magnetic

field should have only the normal component (Bz), but

no tangential components (Bx = By = 0). Thus, the

unpaired extra magnetic flux at the bottom boundary

is connected to the top boundary so that the condition∮
S

B · n̂ dS = 0 should be met. The source surface

boundary condition at the outer corona was first sug-

gested by Altschuler & Newkirk (1969) and has since

been widely applied to potential field models. A theory

of NLFFFs with a source surface boundary condition

was put forward by Aly & Seehafer (1993), but FFF

reconstruction with Bn and Jn together or B as the

bottom boundary condition and with the source surface

condition at the top boundary has not been attempted

before the present paper2.

New NLFFF solvers must be tested against known an-

alytical FFFs before being applied to solar vector mag-

netograms. Currently two analytical NLFFF solutions

are widely used as reference fields. The FFF models by

Low & Lou (1990) (hereafter LL) are exact analytical so-

lutions, which involve modestly sheared magnetic fields

without flux ropes. The models by Titov & Démoulin

(1999) (hereafter TD) are approximate analytical solu-

tions involving a flux rope and a background magnetic

field in equilibrium. Most NLFFF solvers presented so

far have well reproduced the LL fields, particularly when

the analytic solutions are used as boundary conditions at

all six boundaries (Schrijver et al. 2006). The TD models

are more difficult to reconstruct, especially in generating

a single flux rope structure, but a few codes have done

the job well (Valori et al. 2010; Jiang & Feng 2016). We

have also tested our new code against those analytical

models, focusing more on the TD models, which have

much more complex field topology than the LL models.

In this paper, we present a new method of coronal

FFF reconstruction and its test against analytical mod-

els. Its application to a solar active region will be given

in a sequel. In Section 2, the poloidal and toroidal rep-

resentation of magnetic field is expounded. Then, we

define the problems to be solved and explain our numer-

ical algorithm in Section 3. In Section 4, we present the

tests of our new method for TD models in comparison

with other methods. Lastly, a discussion and summary

are provided in Section 5.

2. POLOIDAL-TOROIDAL REPRESENTATION OF

MAGNETIC FIELD

Let us now consider a domain, which encloses a star,

but excludes the star, and we set up a coordinate system

there in such a way that the stellar boundary is a co-

ordinate surface of one coordinate, say, ξ. For example,

if the domain is the space exterior to a spherical star of

radius R, the stellar boundary is the surface r = R, i.e.,

ξ = r, and the natural choice of the coordinates would be

spherical coordinates (r, θ, ϕ). If the domain is a semi-

infinite space above a plane, the planar stellar boundary

is the surface z = 0, i.e., ξ = z, and the natural choice of

the coordinates would be Cartesian coordinates (x, y, z)

or cylindrical coordinates (ρ, ϕ, z). A magnetic field (a

2 In van Ballegooijen et al. (2000), van Ballegooijen (2004) and
van Ballegooijen et al. (2007), a source surface condition was
employed at the top boundary, but it was not intended to solve
an FFF problem, in which both Bn and Jn (or B) are imposed
as the bottom boundary conditions.
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solenoidal vector field) in such a domain can in general

be decomposed into a poloidal field BP and a toroidal

field BT (Elsasser 1946; Lüst & Schlüter 1954; Chan-

drasekhar & Kendall 1957; Chandrasekhar 1961; Backus

1958; Rädler 1974; Stern 1976; Backus 1986; Low 2006,

2015; Berger & Hornig 2018; Yi & Choe 2022), i.e.,

B = BP + BT , (6)

in which

BP = ∇× (∇ξ ×∇Φ) , (7)

BT = ∇ξ ×∇Ψ . (8)

Here ∇ξ = r̂ in spherical coordinates and ∇ξ = ẑ in

Cartesian or cylindrical coordinates. The scalar fields

Φ and Ψ, respectively, are called poloidal and toroidal

scalar functions (Backus 1986) or Chandrasekhar-

Kendall functions (Montgomery et al. 1978; Low 2006).

We will simply name them the poloidal and toroidal

functions in this paper, and we will call the magnetic

field description given by equations (6)–(8) the poloidal-

toroidal representation (hereafter PT representation)3.

As can be seen in equations (7) and (8), BP and BT

are individually divergence-free (solenoidal), and so is

B naturally. This is one of the merits of the PT repre-

sentation when used in numerical computation. Even if

a numerical expression of B is not exactly divergence-

free, the discretization error does not increase with time

(iterations) nor accumulate in some places. Thus, we

are relieved of the concern about ∇ ·B.

We can decompose a magnetic field B(r) into two

parts as

B(r) = Bt(r) + Bn(r) , (9)

in which Bn(r) = n̂(n̂ ·B), where n̂ = ∇ξ/|∇ξ|, is the

component of B(r) normal to a constant-ξ surface con-

taining the point r, and Bt(r) = B − n̂(n̂ · B) is the

tangential component. Equation (8) tells that BT has

only tangential components to the constant-ξ surfaces,

i.e.,

n̂ ·BT = 0 , (10)

3 The PT representation has also been called the Mie represen-
tation (Backus 1986) or the Chandrasekhar-Kendall representa-
tion (Montgomery et al. 1978; Low 2006) crediting Mie (1908)
and Chandrasekhar & Kendall (1957), respectively. However,
the credited works only addressed solutions of linear vector
Helmholtz equations, to which linear FFFs also belong. For such
a field, Φ and Ψ are not independent of each other while for a
general magnetic field, Φ and Ψ are independent. The existence
and uniqueness of Φ and Ψ for an arbitrary B was first treated by
Backus (1958), and Chandrasekhar’s description of general mag-
netic fields by two independent scalar functions was first given in
his single-authored book (Chandrasekhar 1961).

and any field line of BT entirely lies in a coordinate

surface of ξ. On the other hand, BP has both tangential

and normal components in general, and

Bn = n̂ ·B = n̂ ·BP . (11)

This property is valid for an arbitrary scalar field ξ.

However, not all formulations in the form of equations

(6)–(8) with an arbitrary ξ are qualified to be called

a standard PT representation, which additionally de-

mands that the curl of a poloidal field be a toroidal field

as the curl of a toroidal field is a poloidal field, i.e.,

∇×BP = ∇ξ ×∇Θ , (12)

where Θ is another scalar field. This requirement is met

when the constant-ξ surfaces are either parallel planes

or concentric spheres (Rädler 1974; Yi & Choe 2022). In

other words, it is required that ξ = f(r), a function of r

only in spherical coordinates, or ξ = f(z), a function of

z only in Cartesian and cylindrical coordinates. Fortu-

nately, stars, the sun included, are almost perfectly of a

spherical shape, and the base of an individual active re-

gion can well be approximated as a plane. In a standard

PT representation, equation (12) tells that

n̂ · ∇ ×BP = 0 , (13)

and it follows that

Jn = n̂ · ∇ ×B = n̂ · ∇ ×BT . (14)

In the coronal FFF reconstruction, what is good about

equations (11) and (14) is that Bn and Jn can be fully

described by the functions Φ and Ψ in a constant-ξ sur-

face only. In a Cartesian coordinate system,

Bn = Bz = ∇2
xyΦ , (15)

Jn = Jz = ∇2
xyΨ , (16)

where

∇2
xy =

∂2

∂x2
+

∂2

∂y2
(17)

is the 2D Laplacian operator in a z = const. plane. In

a spherical coordinate system,

Bn = Br = ∇2
θϕΦ , (18)

Jn = Jr = ∇2
θϕΨ , (19)

where

∇2
θϕ =

1

r2sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2sin2 θ

∂2

∂ϕ2
(20)

is the 2D Laplacian operator in an r = const. surface

(sphere). Since the forms of ∇2
xy and ∇2

θϕ do not include
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any normal derivatives, Bn and Jn are fully described by

the boundary values of Φ and Ψ only. Thus, implement-

ing the boundary conditions Bn and Jn in a numerical

grid is quite straightforward.

In this paper, we will confine ourselves to rectangu-

lar domains with Cartesian coordinates. In the vector

potential description of magnetic field,

Jz =
∂

∂z
(∇ ·A)−∇2Az

=
∂

∂z
(∇xy ·Axy)−∇2

xyAz , (21)

where ∇xy = x̂
∂

∂x
+ ŷ

∂

∂y
is the 2D ∇-operator and

Axy = Axx̂ + Ayŷ. The above equation shows that at

least first order normal derivatives of two components of

A is required for describing Jz(z = 0). Thus, the bound-

ary values of some components of A must be changed

according to the variation of A inside the domain. This

laborious adjustment of A(z = 0) can be avoided when

the gauge

∇xy ·Axy = 0 (22)

is employed, not only at the boundary z = 0, but also

inside the domain. The gauge (22) is satisfied when

Axy(r) = ẑ ×∇Φ(r) , (23)

where Φ is an arbitrary scalar field defined in the do-

main. Thus, the vector potential under this gauge is in

the form

A = ẑ ×∇Φ +Azẑ , (24)

and the resultant magnetic field is in the form

B = ∇× (ẑ ×∇Φ) +∇×Azẑ . (25)

Comparing the above equation with equations (6)–(8),

we can see that the Φ in equation (25) is nothing but

the poloidal function Φ in equation (7) and the Az is

−Ψ in equation (8). In this paper, the Φ above is our

poloidal function, but for our toroidal function, Az is

taken instead of −Ψ. Therefore, we have the following

expressions for the respective three components of B

and J , to be used for our numerical computation.

Bx = − ∂

∂x

(
∂Φ

∂z

)
+
∂Az
∂y

, (26)

By = − ∂

∂y

(
∂Φ

∂z

)
− ∂Az

∂x
, (27)

Bz =
∂2Φ

∂x2
+
∂2Φ

∂y2
. (28)

Jx =
∂

∂x

(
∂Az
∂z

)
+

∂

∂y

(
∇2Φ

)
, (29)

Jy =
∂

∂y

(
∂Az
∂z

)
− ∂

∂x

(
∇2Φ

)
, (30)

Jz = −
(
∂2Az
∂x2

+
∂2Az
∂y2

)
. (31)

The first terms in the righthand side of equations (26)

and (27) are the 2D curl-free (irrotational) part of the

tangential magnetic field Bt = Bxy = Bxx̂ + Byŷ, and

the second terms form its 2D divergence-free (solenoidal)

part. The same is true for Jt = Jxy = Jxx̂ + Jyŷ given

by equations (29) and (30).

Closing this section, a remark should be made that

the PT representation in a Cartesian coordinate system

demands a special treatment when the magnetic field

is periodic in x and y (Schmitt & von Wahl 1992). In

our FFF calculations of this paper, we do not employ

a periodic boundary condition and thus are relieved of

such a special care. See Appendix A for some details.

3. NUMERICAL ALGORITHM AND MODELING

3.1. Numerical Algorithm

As pointed out by Grad & Rubin (1958), an FFF prob-

lem given by equations (1) and (2) is semi-elliptic and

semi-hyperbolic. The hyperbolic nature of the problem

lies in equation (3), which is called a magnetic differ-

ential equation (Kruskal & Kulsrud 1958). The Grad-

Rubin type procedure includes a solver of the magnetic

differential equation, practically putting more weight on

the hyperbolic nature of the problem. In variational

methods, the elliptic nature is more emphasized and the

hyperbolic nature is rather implicitly considered. Our

new algorithm is more inclined to variational methods

in that we solve elliptic equations at every iteration step

with the hyperbolic nature of the problem considered in

the source terms. However, it is not variational because

we do not try to extremize any functional. The rationale

and details of our new method are given below.

Let us simply consider a magnetofrictional evolution

of magnetic field under ideal MHD condition. Then, the

electric field is given by E = −v×B after a proper nor-

malization removing constants involved in unit systems.
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We can set

v = ν(r, t)
J ×B

B2
, (32)

where ν(r, t) is an arbitrary scalar field, which may be

set to unity in nondimensionalized equations. Then

E = − (J ×B)×B

B2
= J − b̂(b̂ · J)

= J − J‖ = J⊥ , (33)

in which b̂ = B/B is a unit vector in the direction of

B, and J‖ = b̂(b̂ · J) and J⊥ = J − J‖ are respectively

component vectors of J parallel and perpendicular to

B. Therefore, the induction equation (Faraday’s law)

reads

∂B

∂t
= −∇× J⊥ = −∇× (J − J‖) . (34)

Since the righthand side of this equation involves second

order spatial derivatives of B, it is a parabolic equation.

As t → ∞, both sides of the parabolic equation go to

zero. The asymptotic state ∇ × J⊥ = 0 means that

J⊥ = ∇φ, where φ is a certain scalar field. If the field

line footpoints at the boundary are fixed, E = 0 at the

boundary and ∇φ = 0 everywhere in the domain. In the

coronal FFF problems, the stressing (winding) and the

relaxing (unwinding) are alternating or they indistin-

guishably coexist. In any case, as t → ∞, the stressing

is reduced to zero, and the asymptotic state is such that

J⊥ = 0, i.e., J = J‖, a force-free state.

Now the PT representation has two variables describ-

ing magnetic field, Φ and Az (= −Ψ), which are di-

rectly related to Bz and Jz by equations (28) and (31)

respectively. From equation (34), we can write down the

evolutionary equation of Bz and Jz as

∂Bz
∂t

= ∇2Bz +

(
∂J‖y

∂x
−
∂J‖x

∂y

)
, (35)

∂Jz
∂t

=
∂

∂z
∇ · J‖ −∇2J‖z +∇2Jz , (36)

where t is a sort of “pseudo-time.” Setting the right-

hand sides of these equations to zero (t = ∞) gives the

following force-free conditions:

∇2Bz =
∂J‖x

∂y
−
∂J‖y

∂x
, (37)

∇2Jz = ∇2J‖z −
∂

∂z
∇ · J‖

= ∇2
xyJ‖z −

∂

∂z
∇xy · J‖ . (38)

It would be more than desirable to solve for Bz and Jz at

once, but the righthand sides of the above equations are

so highly nonlinear as to make such an attempt appear

hopelessly difficult. The lefthand sides of the equations

are linear and purely elliptic while the hyperbolic na-

ture of the FFF equations is contained in the righthand

sides. With this understanding, we propose the follow-

ing iteration procedure:

∇2Bz
n+1 =

∂J‖x
n

∂y
−
∂J‖y

n

∂x
, (39)

∇2
xyΦn+1 = Bz

n+1 , (40)

∇2Jz
n+1 = ∇2J‖z

n − ∂

∂z
∇ · J‖n

= ∇2
xyJ‖z

n − ∂

∂z
∇xy · J‖n , (41)

∇2
xyAz

n+1 = −Jzn+1 , (42)

in which the superscript denotes the iteration step. Here

we are to solve simple 3D Poisson equations for Bz
and Jz with source terms evaluated with known val-

ues. Then, the poloidal function Φ and the toroidal

function Az are updated by solving 2D Poisson equa-

tions at each z = const. plane, and all the other vari-

ables at the (n + 1)-th step are calculated from Φn+1

and Az
n+1 by equations (26), (27), (29) and (30). The

iteration procedure given by equations (39)–(42) is not

variational because it does not try to extremize any func-

tional. The iteration step n is far from representing any

pseudo-time because we are already at t =∞. Although

we currently cannot present a mathematical proof of the

convergence of our algorithm, our tests with many dif-

ferent real and artificial magnetograms have never failed

in convergence. A similar iterative method was used

for solving 2D steady-state Navier-Stokes equations de-

scribed in stream function and vorticity (Roache 1975).

3.2. Boundary and Initial Conditions

In this paper, we consider a rectangular domain

V = {(x, y, z)|0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz}4.

Its boundary consists of six planes. The z = 0 plane

corresponds to the coronal base, and the z = Lz plane

is an artificial top boundary of the corona. The lat-

eral boundary of an active region corona consists of

four planes: x = 0, x = Lx, y = 0 and y = Ly.

A numerical grid is set up in the computational do-

main such that G = {(i, j, k)| i = 0, 1, 2, . . . , Nx, j =

0, 1, 2, . . . , Ny, k = 0, 1, 2, . . . , Nz}.
At the bottom boundary (z = 0), Bz and Jz are given,

which are readily translated into Φ and Az by solving

2D Poisson equations ∇2
xyΦ = Bz and ∇2

xyAz = −Jz

4 A domain V = {(x, y, z)|xa ≤ x ≤ xb, ya ≤ y ≤ yb, za ≤ z ≤ zb}
can always be expressed in that form by a displacement of the
origin.
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once for all. Although imposing Bz and Jz at z = 0 is

straightforward owing to the PT representation of mag-

netic field, evaluating the righthand side of equation (41)

at the grid plane k = 1 is somewhat tricky because the

finite difference form of the z-derivative term
∂

∂z
∇xy ·J‖

at k = 1 (the first grid plane above the bottom bound-

ary) requires the value of J‖ at k = 0 (z = 0). As can

be seen in equations (29) and (30), Jx and Jy involve

a second order z-derivative ∂2Φ/∂z2, which cannot un-

ambiguously be defined at z = 0. However, the term

J‖(z = 0) does not need to be evaluated at all. Since

the equations we are solving (eqs. [37] and [38]) already

represent a stationary state (t = ∞), we should rather

set J⊥(z = 0) = 0. Using the relation ∇·J‖ = −∇·J⊥,

we can rewrite equation (38) as

∇2Jz = ∇2J‖z +
∂

∂z
∇ · J⊥

= ∇2
xyJ‖z +

∂

∂z
∇xy · J⊥xy +

∂2Jz
∂z2

. (43)

The stationary condition J⊥(z = 0) = 0 allows us to

evaluate the second term in the rightmost hand side of

the above equation straightforwardly. The implementa-

tion of the boundary condition at z = 0 is thus com-

pleted. We have tried another method, which uses a

plausible relation

J‖xy(x, y, z = 0) = α(x, y, 0)B∗xy(x, y, 0) , (44)

in which α = Jz/Bz and B∗xy is the observed horizon-

tal magnetic field. Using this relation corresponds to

employing the observed three components of magnetic

field at z = 0 and enforcing the force-free condition at

the bottom boundary. The results of both methods are

compared for many cases and they turn out to be sur-

prisingly similar to each other.
The magnetogram of an active region generally does

not have the same positive and negative magnetic fluxes

because some field lines are connected to the outside of

the active region as closed fields or to the solar wind as

open fields. We want to accommodate such a flux im-

balance in the new FFF construction method. Previous

attempts to consider a flux imbalance have placed im-

age polarities of opposite signs outside the real domain

(cf. Seehafer 1978; Otto et al. 2007, for two different

ways). These methods, however, make too much flux

go out of the real domain and thus the constructed field

configuration highly depends on where the image po-

larities are located. In our study, we rather confine all

the flux within the computational domain, allowing only

the unmatched flux to escape through the top boundary.

Magnetic field lines thus cannot penetrate the lateral

boundary, but can be tangential to it.

In regard to the lateral boundary (x = 0, Lx, y =

0, Ly), the unit outward normal vector to the boundary

is denoted by n̂, the normal component vector of a vec-

tor field F by Fn = n̂(n̂ · F ), its tangential component

vector by F‖ = n̂× (F × n̂) = F − Fn, and the normal

derivative by ∂/∂n = n̂ · ∇. Since we have to solve four

Poisson equations, i.e., equations (39)–(42), at every it-

eration step, we have set up four boundary conditions

respectively on Bz, Φ, Jz and Az at the lateral bound-

ary. To make this boundary impenetrable to magnetic

field, i.e., Bn = 0, we choose the following boundary

conditions.

∂Bz
∂n

= 0 , (45)

∂Φ

∂n
= p1 = const. , (46)

Jz = 0 , (47)

Az = 0 . (48)

As can be seen in equations (26) and (27), the condi-

tions (46) and (48) result in Bn = 0. The 2D Poisson

equation (40) gives the following constraint:∮
∂Φ

∂n
dl =

∫
BzdS , (49)

in which dl is a unsigned line element surrounding the

2D domain at z = const. and dS is the area element in

the plane. Then, p1 in equation (46) is given by

p1 =
1

(2Lx + 2Ly)

∫ Ly

0

∫ Lx

0

Bz dx dy , (50)

If an infinite plane is a perfectly conducting rigid wall

impenetrable to magnetic field, the magnetic field in one

side of the wall can be regenerated by replacing the wall

by an image field beyond the wall in such a way that

Bt is symmetric and Bn is anti-symmetric across the

boundary. In our case, the lateral boundary consists

of four finite planes and the magnetic flux in each z =

const. plane is unmatched, which does not realize an

exact symmetry or anti-symmetry across each boundary

plane. Nevertheless, the local symmetry condition (45)

turns out to be a practically good choice for our situation

too. The image field beyond an infinite wall also gives

Jt = 0 and ∂Jn/∂n = 0. The boundary condition (47)

is also inspired by this picture.

At the top boundary, we employ a source surface

condition (Altschuler & Newkirk 1969; Aly & Seehafer

1993). The purpose of this boundary condition is not

only to mimic the upper corona, where the solar wind

carries out the open magnetic field, but also to provide

an exit for the imbalanced magnetic flux. The source
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surface boundary condition is simply given by

Bx(z = Lz) = By(z = Lz) = 0 , (51)

∂Bz
∂z

∣∣∣
z=Lz

= 0 . (52)

The condition (51) results in

Jz(z = Lz) = 0 , (53)

implying that no current can escape or come in through

the top boundary. Since Jn = 0 at the lateral boundary

in the final force-free state, it follows that∫
z=0

Jz dx dy = 0 , (54)

i.e., the positive and negative currents through the bot-

tom boundary should be balanced. This constraint must

be fulfilled by preprocessing of the magnetogram data.

To start the iteration procedure given by equa-

tions (39)–(42), we need zeroth step (n = 0) values of

Bz, Φ, Jz and Az, which may be called initial condi-

tions. So far many numerical calculations for FFFs have

taken potential fields for their initial conditions (Schri-

jver et al. 2006). In the PT representation, a potential

field is prescribed by

∇2Bz = 0 , (55a)

∇2
xyΦ = Bz , (55b)

Jz = 0 , (55c)

Az = 0 , (55d)

in which the last line results from equation (55c) and our

lateral boundary condition (48). Since equations (55c)

and (55d) do not match our boundary conditions at z =

0, the potential field as an initial condition will have

awkward bending of field lines just above the bottom

boundary. Instead of starting with a current-free state,

we rather want to load the entire domain with currents.

The simplest way for this would be to set

∇× J = ∇×∇×B = 0 . (56)

This field is prescribed by

∇2Bz = 0 , (57a)

∇2Jz = 0 , (57b)

with ∇2
xyΦ = Bz and ∇2

xyAz = −Jz. In our experience,

this initial field reduces the number of iteration steps

required for convergence compared with the potential

field as an initial condition.

4. TESTS OF OUR NEW METHOD AGAINST THE

TITOV-DÉMOULIN MODELS

4.1. Flux Ropes and Bald Patches of Titov-Démoulin

Models

As with other numerical methods, our method is to be

tested with a computational code built upon it against

known analytical solutions. So far most existing codes

have been tested against the analytical model by Low

& Lou (1990), which represents a class of moderately

sheared magnetic fields, and have shown good to excel-

lent performances (Schrijver et al. 2006). Our own vari-

ational code VFVP (Variational FFF Code in Vector

Potential Formulation) we developed earlier (see Ap-

pendix B) and the code based on our new method NFPT

(Non-variational FFF Code in Poloidal-Toroidal For-

mulation) also are found to be working as well for the

Low & Lou model as other codes are (Schrijver et al.

2006; Inoue et al. 2014), and we do not feel the necessity

of presenting the results here. In this paper, we present

the performance of the codes in reproducing the NLFFF

model by Titov & Démoulin (1999). In this analytical

model, a flux rope carrying a helical force-free field and

ambient fields generated by two magnetic charges and a

line current underneath the surface are in equilibrium.

Each Titov-Démoulin (TD) model is prescribed by six

free parameters: R the major radius of the torus, a the

minor radius, L the half-distance between two magnetic

charges, q the magnitude of the magnetic charge, d the

distance between the photosphere and the subsurface

line current lying along the symmetry axis of the torus,

and I0 the subsurface line current. The toroidal current

I in the torus is determined by the force balance condi-

tion. The field line twist number Nt at the surface of the

entire (closed) torus also comes out from these parame-

ters. The coronal part of the torus, which lies above the

photospheric plane, has a twist Ncor at its surface

Ncor ≈
Nt
π

cos−1
(
d

R

)
. (58)

Table 1 lists the parameters prescribing the three TD

models to be presented in this paper. It is to be noted

that since the TD model employs a thin flux tube ap-

proximation assuming a high aspect ratio (A = R/a �
1), the minor radius of the flux tube may not be uni-

form along its axis in numerical models with a modest A,

particularly when lateral and top boundary conditions

are differently prescribed from those of the analytical

models.

Comparison of numerical results and reference mod-

els can first be made by their appearance. In each TD

model, there is only one flux rope involved. It is thus

a touchstone of different numerical models whether one



10 Yi et al.

Table 1. Parameters Prescribing Three TD models

Model R [106 m] a [106 m] L [106 m] d [106 m] q [1012 Wb ] I0 [1012 A] Nt [turns]a No. of grid-points

TD1 b 110 35 100 50 100 −13 2.577 151 × 251 × 101

TD2 c 100 35 60 60 80 −3 8.8 151 × 251 × 101

TD3 d 110 32.5 50 50 100 −7 5.0 257 × 351 × 201

aThe field line twist at the surface of the entire closed torus, which is larger than the twist of the coronal part of
the torus.
bUsed in Wiegelmann et al. (2006a).

cCase 5 of Demcsak et al. (2020).

dUsed in Török et al. (2004).

flux rope is well reproduced with the characteristic fea-

tures of the analytical model. Figure 1 shows the field

lines of the flux rope in model TD1 (refer to Table 1) ob-

tained from (a) the analytical model, (b) our new code

NFPT, (c) our earlier code VFVP, and (d) the optimiza-

tion code in the SolarSoftWare (SSW), which is avail-

able in the public domain5. All field lines are traced

from the same footpoints, one group in the positive po-

larity area and the other in the negative polarity area

of the flux rope in the analytical model. The field lines

traced from the positive and negative footpoints of the

magnetic axis of the flux rope in the analytical model

are rendered thicker than other field lines. The field

lines of NFPT and VFVP apparently express a single

flux rope while those of SSW show two separated flux

tubes. The two magnetic axis field lines obtained from

our new code NFPT overlap with each other as in the

analytical model, but those from our earlier code VFVP

are slightly off if not as much as those from SSW. Since

we do not have observational data at the lateral and top

boundaries in practical situations, all numerical compu-

tations here use the data of the analytical model at the

bottom boundary only, and proper artificial boundary

conditions are used for the lateral and top boundaries.

For the same TD model, Wiegelmann et al. (2006a) also

reported two separated flux tubes crossing each other

when the analytical solution is used only at the bot-

tom boundary, whereas their constructed field bears a

remarkable resemblance to the analytical model when

the analytical solution is imposed at the lateral and top

boundaries too.

Beyond mere appearance, we can quantitatively com-

pare numerical models with analytical solutions using

so-called “figures of merit” devised by Schrijver et al.

5 http://sprg.ssl.berkeley.edu/∼jimm/fff/optimization fff.html

(2006), which will also be called “performance metrics”

in this paper. Although we will use the same notations

for them as in Schrijver et al. (2006), the definitions of

those and other metrics are reiterated here for readers’

convenience.

Cvec =

∑
i

Bi · bi(∑
i

|Bi|2
∑
i

|bi|2
) 1

2

, (59)

CCS =
1

M

∑
i

Bi · bi
|Bi| |bi|

, (60)

E
′

n = 1−

∑
i

|Bi − bi|∑
i

|bi|
, (61)

E
′

m = 1− 1

M

∑
i

|Bi − bi|
|bi|

, (62)

ε =

∑
i

|Bi|2∑
i

|bi|2
, (63)

CW sin =

∑
i

|Ji ×Bi|
Bi∑

i

Ji
, (64)

in which i denotes each grid point in the computational

domain, M the total number of grid points, b the ref-

erence magnetic field, and B the numerical solution.

Ideally, the reference field b should be the exact solu-

tion under the same boundary conditions used by the

numerical solutions B. However, the boundary condi-

tions for b and B are inevitably different if the lateral

and top boundary values of b are not known to those

who construct B. Also, the analytical exactness is dif-

ferent from numerical exactness in a grid of finite res-

olution. Furthermore, the analytical model of Titov &

http://sprg.ssl.berkeley.edu/~jimm/fff/optimization_fff.html
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Table 2. Performance Metrics of Different Solutions for Model TD1

Solution Cvec CCS E
′
n E

′
m ε εp CW sin

Analytical 1.000 1.000 1.000 1.000 1.000 2.407 0.080a

NFPT 0.935 0.898 0.590 0.534 0.643 1.573 0.102

VFVP 0.947 0.946 0.671 0.628 0.739 1.781 0.298

SSW 0.920 0.942 0.556 0.472 0.537 1.293 0.662

aThis value is not zero in a numerical grid.

Démoulin (1999) is an approximate solution. For these

reasons, some authors have (e.g., Valori et al. 2010; Guo

et al. 2016) relaxed the analytical solution in a numerical

grid to obtain a reference field. In this paper, however,

we use the unprocessed analytical solutions as reference

fields in spite of the possible loss of performance scores.

The metric CW sin was originally devised by Wheatland

et al. (2000), in which a different notation σJ was given

to it, but the current naming has become more popular

afterwards. While the metrics Cvec, CCS, E
′

n, E
′

m, and

ε are based on the comparison of the numerical solution

with the reference field, the metric CW sin only judges

the force-freeness of the numerical solution itself. If the

reference field and the numerical solution are exactly

identical, the former five metrics should be all 1. For

an exact force-free field, CW sin should be 0. In some

literature and also in this paper, another quantity εp is

presented, which is the magnetic energy of a solution in

units of the potential field energy.

εp =

∑
i

|Bi|2∑
i

|Bp,i|2
, (65)

where Bp the potential magnetic field. This metric uses

the potential magnetic field as the reference field and

indicates the nonpotentiality of the solution, which may

be due to the deviation of the solution from the exact

FFF as well as to the difference of the exact FFF and

the potential field.

Table 2 lists the seven performance metrics for TD1

derived from the analytical solution and the three nu-

merical solutions, NFPT, VFVP and SSW. The pre-

sented value of CW sin for the analytical solution is ob-

tained by assigning the analytical magnetic field to a

numerical grid and evaluating the current density by a

finite-difference method, and hence it deviates from 0

inevitably. As for the first five metrics, the scores are

ranked in order of VFVP, NFPT and SSW. However, we

have already seen that the field obtained by VFVP does

not show as much resemblance to the analytical solution

as that by NFPT. It is only in TD1 that VFVP’s scores

are better than NFPT’s. For other TD models, NFPT

turns out to excel VFVP in all metrics. In contrast

to the metrics by Schrijver et al. (2006), the scores of

the metric CW sin are ranked in order of NFPT, VFVP

and SSW, reflecting best the resemblance of the numer-

ical solutions to the TD field featured by one flux rope.

The metric CW sin is independent of the choice of the

lateral and top boundary conditions and evaluates the

force-freeness of a solution itself. It is interesting that

the apparent resemblance depends more on the exact-

ness (force-freeness) of the solution than its numerical

proximity to a reference solution. In other TD models

too, the NFPT code conspicuously outperforms others

in CW sin.

Figure 1 shows that field lines are more and more

loosely wound as we go from (b) to (d). To compare

the performance of different numerical methods, we have

also compared the twist of the numerical solutions with

that of the analytical one. The twist of a field line de-

noted by CB is only meaningfully defined about another

field line denoted by CA, and we thus denote the twist

of CB around CA by Tw(CA, CB). In the case of a flux

rope, its magnetic axis would be the most meaningful

choice for CA. In numerical solutions, the magnetic axes

traced from the positive polarity and from the negative

polarity can be different if more than one flux tube ap-

pear in a numerical solution as in the cases of VFVP

and SSW. Thus we have to calculate two sets of twist

with two magnetic axes traced from different polarity

areas. The twist is solely defined by serial local connec-

tions between two curves, and the following formula is

valid for open curves as well as for closed curves (Tyson

& Strogatz 1991; Berger & Prior 2006).

Tw (CA, CB) =
1

2π

∫
CA

t̂A × û · dû
ds
ds , (66)

in which t̂A =
drA
ds

, where s is the arclength of the curve

CA, is a unit tangent vector to CA, and û = u/|u|,
where u is a vector connecting a point in CA to a close

point in CB in such a way that u · t̂A = 0. With this

method, we have measured the twist of 24 field lines,
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Figure 1. Field lines of model TD1. Each row shows a side view and a top view for (a) the analytical model, (b) the numerical
solution by our new code NFPT (non-variational FFF code in poloidal-toroidal formulation), (c) the numerical solution by our
earlier code VFVP (variational FFF code in vector potential formulation), and (d) the numerical solution by the optimization
code in SolarSoftWare (SSW). Field lines in all models are traced from the same footpoints. The black and white brightness
in the photosphere represents the polarity of the line-of-sight magnetic field component, i.e., white for positive and black for
negative. The thin field lines in magenta are traced from certain positive footpoints of the analytical flux rope and those in cyan
from negative footpoints. The thick field lines are drawn from the two footpoints of the magnetic axis (blue from the positive
and pink from the negative) of the analytical flux rope. For the analytical model (a) and the numerical model (b), the thick
field lines overlap with each other. For the numerical model (c), they are slightly off, but the overall structure shows one flux
rope. For the numerical model (d), thick field lines are quite separated and the overall structure indicates the presence of two
flux tubes rather than one.
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Figure 2. Mean twists of different solutions in units of
turns for TD1. Twenty four field line footpoints are chosen
in each circle of radius r/r0 = 1, 2, 3, 4, 5, where r0 = 7 Mm,
in both positive (P) and negative (N) polarity sides, and an
average is taken to give the mean twist as a function of r at
z = 0. The mean twists of field lines traced from the positive
footpoints and those from the negative footpoints are almost
indistinguishable. The twist of NFPT is quite close to that
of the analytical solution (TD). The SSW solution shows the
least twist in magnitude.

whose footpoints are in a circle of radius r centered at

a magnetic axis footpoint at z = 0 , and have taken an

average over them.

〈Tw(r)〉 =

24∑
i=1

Tw(r, θi) |Bz(r, θi, z = 0)|

24∑
i=1

|Bz(r, θi, z = 0)|
, (67)

in which (r, θi) is the polar coordinates of the i-th field

line footpoint, and θi = iπ/12. Circles of five different

radii, r/r0 = 1, 2, 3, 4, 5 where r0 = 7 Mm, are taken

in the positive and negative polarity areas, respectively,

so that ten mean values of twist in units of turns (2π

radians) are obtained for each solutions and are plotted

in Figure 2. As shown in the figure, the mean twists of

field lines traced from the positive polarity side and from

the negative side for the same r are indistinguishable. It

is remarkable that the twists of the NFPT solution are

closest to those of the analytical solution. The twists

obtained by VFVP a little fall short of the twists of the

former two solutions, and the SSW yields quite small

twists as seen in Figure 1.

Previously, the twist of a field line was sometimes mea-

sured by the following formula (Inoue et al. 2011, 2014)

Tw =
1

4π

∫
CB

αdl , (68)

in which α = B · J/B2 and and l is the arclength of

the field line CB . This method is possibly subject to

criticism in that a twist cannot be defined for one curve

alone. With an implicit assumption that a magnetic

axis of a flux rope takes the role of CA, the equation can

be made meaningful with a correction that the line inte-

gral should be taken over the magnetic axis CA, dl being

the arclength of CA, and necessarily under the condition

that the toroidal current density should be uniform over

each cross-sectional area of the flux tube where the field

line CB lies. We have compared the twists by equa-

tion (66) and those by equation (68) without modifica-

tion for all the solutions of TD1, and have found that the

latter method tends to overestimate the twists, which is

attributed to the larger length of CB than CA. The dis-

crepancy is found to grow with r, because the length

ratio of CB to CA increases with r.

The model TD2 (see Table 1) characteristically has

a bald patch, which is a segment in a polarity inver-

sion line, where locally concave upward field lines touch

the photosphere (Titov et al. 1993). A bald patch is

a possible location of a solar prominence of inverse po-

larity (Lee et al. 1995; Mackay et al. 2010), and it can

develop into a current sheet (Low 1992; Cheng & Choe

1998), where magnetic reconnection may take place (De-

lannée & Aulanier 1999). In TD models, a bald patch

appears only with a sufficiently large twist of the flux

rope (Titov & Démoulin 1999). TD models with bald

patches have been reproduced in several numerical so-

lutions (Valori et al. 2010; Jiang & Feng 2016; Demcsak

et al. 2020). The parameters of our TD2 is the same

as those of Case 5 in Demcsak et al. (2020), in which a

Grad-Rubin type code (Wheatland 2007) was used. Fig-

ure 3 shows the top and side views of four TD2 solutions,

(a) analytical, (b) NFPT, (c) VFVP and (d) SSW. As

in the case of TD1, the NFPT solution reproduces one

flux rope with a single magnetic axis of the analytical

solution. The solutions by VFVP and SSW produces

two flux tubes. The two flux tubes by SSW are widely

separated. All four models show bald patches, but the

endpoints of the bald patch field lines are quite differ-

ently located. The footpoint positions of the bald patch

field lines apparently indicate their writhes (Berger &

Prior 2006). The footpoints and the S-shape appear-

ances of the bald patch field lines in the NFPT solution

and the analytical solution are quite close although the

field lines in the latter are slightly longer and their apex

reaches a higher altitude. While the separation of the

magnetic axes of two flux tubes is smaller in VFVP than

in SSW, the writhe of the bald patch field lines is larger

in SSW than in VFVP. Compared with the solution by

Demcsak et al. (2020), the analytical solution and and

songyongliang
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Figure 3. Field lines of model TD2. The upper row (1) shows top views and the lower row (2) side views of the magnetic
axis field lines in blue and pink and the bald patch field lines in red. Each column represents (a) the analytical model, (b)
the numerical solution by our new code NFPT (non-variational FFF code in poloidal-toroidal formulation), (c) the numerical
solution by our earlier code VFVP (variational FFF code in vector potential formulation), and (d) the numerical solution by
the optimization code in SolarSoftWare (SSW). The black and white background brightness in the photosphere represents the
polarity of the line-of-sight magnetic field component, i.e., white for positive and black for negative. The magnetic axis field
lines in all models are traced from the same positive (blue) and negative (pink) footpoints. The bald patch field lines (red) are
traced from the bald patch in the polarity inversion line.

Table 3. Performance Metrics of Different Solutions for Model TD2

Solution Cvec CCS E
′
n E

′
m ε εp CW sin

Analytical 1.000 1.000 1.000 1.000 1.000 2.125 0.127a

NFPT 0.985 0.987 0.832 0.833 0.803 1.953 0.045

VFVP 0.923 0.931 0.630 0.627 0.605 1.288 0.172

SSW 0.891 0.943 0.569 0.560 0.482 1.024 0.366

aThis value is not zero in a numerical grid.

the NFPT solution show larger writhes of bald patch

field lines than their result while the VFVP and SSW

solutions show smaller writhes. Limited to TD models,
nonvariational methods (NVPT and a Grad-Rubin type

code) seem to be better at revealing topological features

of the field than variational methods (VFVP and SSW).

The performance metrics of the four solutions for TD2

are listed in Table 3. The NFPT solution excels other

numerical solutions in all metric scores, and it particu-

larly stands out in CW sin. It is again suggested that the

force-freeness represented by CW sin is more important

in reproducing topological features of the fields, e.g., flux

ropes and bald patches, than other metrics.

4.2. Hyperbolic Flux Tubes in the Titov-Démoulin

Models

If a magnetic field is purely two-dimensional, i.e., if

it depends on two coordinates and its field lines lie in

parallel planes, an X-shaped field configuration has two

surfaces called separatrices intersecting each other at a

line called separator. The field lines in each quadrant

may locally be approximated by hyperbolas near the X-

point and they have discontinuous connectivities across

separatrices. The separator may be deformed into a cur-

rent sheet, where magnetic reconnection can take place

(Syrovatskii 1981). If we add a smooth third compo-

nent of magnetic field dependent on two coordinates to

a purely 2D magnetic field, two field lines, whose end-

points are very close with a former separatrix between

them, have a large separation at the other ends (Long-

cope & Strauss 1994). Thus, the field connectivity is

everywhere continuous. In a 3D situation, separatri-

ces and separators appear if nullpoints or bald patches

are present in the domain. Otherwise, the field con-

nectivity is everywhere continuous, but there may exist

quasi-separatrix layers (QSLs), across which the sepa-

ration between the ends of field lines, which are very

close somewhere in the domain, is very large (Priest &
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Figure 4. The squashing factor Q maps in the y = 0 plane and field lines of TD3 showing QSLs and HFTs. Each column
regards (a) the analytical solution, (b) the NFPT solution and (c) the SSW solution. The first row shows Q color maps and three
boxed areas, through which the field lines shown in other rows are passing. The black box (R1) lies above the quasi-separator
(QS: magnetic axis of the HFT), the light green box (R2) encloses the QS and the orange box (R3) lies below the QS. The
second to fourth rows show three sets of field lines passing through the three boxes in different perspectives. The field lines
through R1 represent the TD flux rope. They are given in red when field lines are traced from the positive polarity side of
the flux rope and in blue when traced from the negative polarity side. The analytical and NFPT solutions show one flux rope,
but the SSW solution shows two flux ropes. The field lines through R2 given in light green form a part of the QSL. The QSL
structure is most conspicuously shown in (a), then in (b) and faintly in (c).

Forbes 1992; Démoulin et al. 1996). Quite similarly to

the 2.5D situation, the field lines in the vicinity of the

intersection of two QSLs look like hyperbolas when they

are projected onto the plane normal to the intersection.

This structure is called a hyperbolic flux tubes (HFTs)

and its magnetic axis is a quasi-separator (Titov et al.

2002, 2003). A current sheet is likely to be formed in

an HFT by magnetic pinching induced by suitable foot-

point motions and consequently magnetic reconnection

ensues (Titov et al. 2003). To find an HFT, Titov et al.
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Table 4. Performance Metrics of Different Solutions for Model TD3

Solution Cvec CCS E
′
n E

′
m ε εp CW sin Eq,bot

a Eq,whole
b

Analytical 1.000 1.000 1.000 1.000 1.000 2.542 0.121 0 0

NFPT 0.978 0.968 0.765 0.725 0.788 2.009 0.094 0.670 0.813

SSW 0.958 0.972 0.672 0.586 0.659 1.675 0.388 3.736 1.357

aThe error metric for the Q values at the bottom boundary only.

bThe error metric for the Q values in the whole computational domain.

Figure 5. The squashing factor Q maps in the z = 0 plane in black and white brightness and the isocontours of Bz for (a) the
analytical solution, (b) the NFPT solution and (c) the SSW solution for TD3. The red contours represent Bz > 0 and the blue
ones Bz < 0.

(2002) proposed a squashing factor (or degree) Q, which

represents how much a cross-section of a flux tube is de-

formed at the other side, as follows.

Q =

(
∂X∓
∂x±

)2
+
(
∂X∓
∂y±

)2
+
(
∂Y∓
∂x±

)2
+
(
∂Y∓
∂y±

)2∣∣∣(∂X∓∂x±

)(
∂Y∓
∂y±

)
−
(
∂X∓
∂y±

)(
∂Y∓
∂x±

)∣∣∣ , (69)

in which [X∓(x±, y±), Y∓(x±, y±)] is a vector function

connecting a footpoint (x±, y±) to its conjugate foot-

point (x∓, y∓). The flux surface of an HFT is an isosur-

face of Q with Q� 2.

To see how well numerical FFF solvers reproduce a TD

field containing an HFT, we have constructed the model

TD3 in Table 1 and calculated the squashing factor Q by

tracing field lines to the boundary from every grid-points

in the domain. The upper row of Figure 4 shows the Q

value in the y = 0 plane, which is a vertical plane cutting

the TD flux rope at its apex. Apparently the Q color

maps show an X-shaped configuration, which is a typical

feature of an HFT. The X-shaped structure manifested

by the same color scheme of Q is most conspicuous in

the analytical solution, then in the NFPT solution and

rather faint in the SSW solution. Figure 4 also shows

field lines passing through three boxed areas in the y = 0

plane, a black box above the axis of HFT, a light green

box in the vicinity of the HFT axis and an orange box

just below it. The upper field lines above the HFT form

one flux rope in the analytical and NFPT solutions and

two flux ropes in the SSW solution. The light green

field lines are supposed to cover a part of the QSL. The

structure of the QSL is best revealed in the analytical

solution and then in the NFPT solution.
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Figure 6. The color map of HQ in the y = 0 plane super-
posed with the isocontours of Q for the analytical solution
of TD3. While the Q contours delineate the cross-sectional
structure of a QSL, the HQ map quite well reveals the quasi-
separator, which is the magnetic axis of an HFT.

Figure 5 shows the Q value in the z = 0 plane in

black and white brightness, superposed with the Bz level

contours, positive in red and negative in blue. In all

three solutions, the Q distributions below the central

part of the flux ropes (−1 < y < 1) are quite similar, but

in the vicinity of the flux rope legs, the Q distributions

are noticeably different. The Q map of the analytical

solution has hook-like structures, which almost surround

the flux rope footpoint areas. The result of our NFPT

also shows hook-like structures, which, however, are a

little smaller and thinner than the analytical ones. In

the Q map by SSW, the hooks are not fully wound, but

are broken in the middle. Apparently the difference in

the Q maps of TD3 is somewhat similar to the difference

in the bald patch fields lines of TD2 shown in Figure 3.

To assess the proximity of the overall Q distribution of

a numerical model to the analytical one, we devise the

following metric

Eq =
1

M

∑
i

|qi −Qi|
|qi|

, (70)

where i is the grid-point index, M the total number of

grid-points, q the squashing factor of the analytic model,

and Q the squashing factor of a numerical solution. If

the numerical solution is identical to the analytical one,

the metric Eq should be zero. We have evaluated the

values of Eq in the z = 0 plane (Eq,bot) as well as in the

whole computational domain (Eq,whole) and have listed

them in Table 4 along with the performance metrics.

The error metric Eq,bot of NFPT is about one fifth that

of SSW. However, the error metric Eq,whole does not

show so much difference as Eq,bot, which may be at-

tributed to the larger portion of grid-points with small

q (Q also) in the whole domain than in the bottom plane

only.

In an HFT, the Q value takes a maximum in a line

called a quasi-separator (Titov et al. 2002). It corre-

sponds to an X-line in a 2.5D magnetic field and may

be called the magnetic axis of an HFT. If one purposes to

find a quasi-separator (QS) and the HFT in its neigh-

borhood rather than to find the entire structure of a

QSL, one may not want to take the trouble of evalu-

ating Q, which requires finding the conjugate footpoint

pairs by field line tracing. Here we propose a rather

simple “local” method of locating a QS and HFT. In

a plane normal to a QS, field lines projected onto this

plane are like hyperbolas and the magnetic field in this

plane has the following property,

J⊥ =

∣∣∣∣∣∣∣∣∣
∂Bx′

∂x′
∂Bx′

∂y′

∂By′

∂x′
∂By′

∂y′

∣∣∣∣∣∣∣∣∣ < 0 , (71)

in which x′ and y′ are arbitrary Cartesian coordinates

in this plane. Since we do not know the location of the

QS from the beginning, we just calculate J⊥ in a plane

normal to the local magnetic field. Then, we set

HQ =

−J⊥ if J⊥ < 0

0 if J⊥ ≥ 0
(72)

so that we may focus on candidate points for a QS. Al-

though the isocontours of HQ would not follow the shape
of a QSL, the maximum of HQ is expected to be located

on the QS. Figure 6 shows a color map of HQ in the

y = 0 plane made from the analytical solution of TD3

superposed with white isocontours of Q. While Q con-

tours are useful for identifying a QSL structure, an HQ

map (or contours) is advantageous for locating a QS.

As both Q and HQ are useful for finding an HFT, their

distributions in the bottom plane (z = 0) are expected

to be similar. This is confirmed by Figure 7, in which

the maximum value of HQ in a field line is expressed

by brightness of brown color at its footpoint in z = 0

and the isocontours of Q = 100 are given in blue for the

analytical solution, the NFPT solution and the SSW so-

lution of TD3. The figure shows that the distributions

of the two quantities are quite consistent. For practical

purposes, we do not need to find the maximum of HQ is

each field line. One may roughly draw field lines globally
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Figure 7. The maximum HQ value of each field line rooted in the z = 0 plane given in brownish brightness and the blue
contours for Q = 100 for (a) the analytical solution, (b) the NFPT solution and (c) the SSW solution for TD3. The HQ maps
and the Q contours show common features.

and construct an HQ distribution in a suspected region.

Then, HQ can be a quick tool for locating a QS and an

HFT.

5. DISCUSSION AND SUMMARY

Our NFPT code requires solving two 3D Poisson equa-

tions (39) and (41) and two 2D Poisson equations (40)

and (42) for k = 1, 2, ..., Nz planes in each iteration step.

In the code, the Poisson equations are solved by a di-

rect solver package FISHPACK (Swarztrauber & Sweet

1975) quite efficiently and accurately. The computa-

tional time per iteration step required by NFPT is about
ten times that of VFVP and about twice that of SSW.

However, the number of iteration steps required for con-

vergence by NFPT is about one tenth of that by VFVP

or SSW. In our TD2 calculations, the NFPT code re-

quired about 200 iteration steps while the other codes

demanded at least 2500 steps. In terms of the com-

putational resources required for producing a solution,

the NFPT is comparable to the VFVP and uses far less

resources than the SSW.

A problem described by a set of partial differential

equations is well-posed if the imposed boundary condi-

tions and constrains yield a unique solution. Although a

problem is mathematically well-posed, its numerical im-

plementation may not be so for diverse reasons. Among

others is the way of information transfer between the

boundary and the inner computational domain, inher-

ent to the numerical method. In order to see whether

the boundary condition is well reflected in the solution

consistently throughout the computational domain, we

have devised the following test. Suppose that a numer-

ical solution has been constructed in a domain

V0 = {(x, y, z) | 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly,
0 ≤ z ≤ Lz}

with a numerical grid

G0 = {(i, j, k) | i = 0, 1, 2, . . . , Nx; j = 0, 1, 2, . . . , Ny;

k = 0, 1, 2, . . . , Nz} .

Then, one can construct a numerical solution in a do-

main reduced in z, i.e., in

Vz0 = {(x, y, z)| 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly,
0 < z0 ≤ z ≤ Lz}

with a numerical grid

Gk0 = {(i, j, k) | i = 0, 1, 2, . . . , Nx; j = 0, 1, 2, . . . , Ny;

k = k0, k0 + 1, k0 + 2, . . . , Nz},

where k0∆z = z0 with ∆z = Lz/Nz, using the former

numerical solution at z = z0 (k = k0) as a bound-

ary condition at the bottom boundary of the new do-

main. At this time, we should not use the former so-

lution as the initial condition, nor impose any known

solutions as the boundary conditions at the lateral and
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Table 5. Performance Metrics of the NFPT
Solutions for Model TD2 in Reduced Grids

k0 Cvec CCS E
′
n E

′
m ε

10 0.999 0.999 0.955 0.953 0.948

20 0.999 0.999 0.955 0.949 0.959

30 0.999 0.999 0.947 0.942 0.944

40 0.999 0.999 0.936 0.931 0.914

50 0.999 0.999 0.924 0.919 0.890

Note—For all the metrics, the numerical so-
lution in the grid G0 is taken for the refer-
ence solution b and the numerical solution
in the grid Gk0 is taken for B.

top boundaries of Gk0 . If the numerical solutions with

grids G0 and Gk0 are identical in the domain Gk0 , it

can be said that the bottom boundary and the solution

in the domain are consistently connected. For TD2, we

have employed a numerical grid with (Nx, Ny, Nz) =

(150, 250, 100). To perform the above test, we have cho-

sen k0 = 10, 20, 30, 40, 50 and constructed numerical so-

lutions with the NFPT code in five different grids Gk0 ,

in all of which the numerical solutions obtained in the

original grid G0 are used as bottom boundary conditions

at k = k0 of Gk0 . To compare the numerical solutions in

the original grid and in each reduced grid, we have eval-

uated five performance metrics by Schrijver et al. (2006)

in the domain Gk0 , using the solution obtained in each

reduced grid Gk0 for B and the solution in the original

grid G0 for b in equations (59)–(63). The results are

given in Table 5. The metrics Cvec and CCS are 0.999

for all k0 while other metrics show a slight tendency of

degradation with increasing k0. These scores of NFPT
are unrivaled with those of variational codes (VFVP and

SSW), all the more so with increasing k0, unless fixed

values of the field are prescribed at all boundaries. Thus,

it can be said that the PT representation and its natural

way of imposing boundary conditions are self-consistent

to generate an unambiguous solution in the whole do-

main. It is also suggested that this test be performed

on other numerical methods to be developed.

To sum up, we have presented a new method of con-

structing a coronal force-free field based on a poloidal-

toroidal representation of magnetic field. The PT rep-

resentation allows us to impose the boundary condi-

tions Bn and Jn at the photospheric boundary once

for all with only the boundary values of the poloidal

and toroidal functions. With a rigid, conducting, slip

wall boundary conditions at the lateral boundaries and

a source surface condition at the top boundary, a mag-

netic flux imbalance at the bottom boundary can be

accommodated. Since no current can escape the com-

putational domain, the current at the bottom boundary

must be preprocessed so that the net current through

it may be zero. At the top boundary, a rigid, conduct-

ing, slip wall condition can also be used instead of the

source surface condition. With this condition, however,

a flux imbalance at the bottom boundary is not allowed

and thus the Bn data there must be preprocessed. Our

new method is nonvariational in the sense that the con-

verging sequence toward the solution does extremize any

conceivable functional. It rather directly targets a solu-

tion, but iterations are needed because of the high de-

gree of nonlinearity. Thus, it requires far fewer iteration

steps than variational methods although one iteration

step requires more computational resources than the lat-

ter. We have tested the NFPT code based on the new

method against the analytical FFF models by Titov &

Démoulin (1999) with other available variational codes,

our own VFVP code and the optimization code in So-

larSoft (SSW). Our new NFPT code excels others in

reproducing characteristic features of TD models, for ex-

ample, one flux rope with a proper twist, a bald patch

with a proper writhe and quasi-separatrix layers with a

hyperbolic flux tube. The NFPT code also produces the

best scores in most performance metrics (Schrijver et al.

2006), especially in CW sin measuring the solution’s own

force-freeness. The application of the NFPT code has

also been made to the vector magnetograms of a real

active region, which will be reported in a sequel paper

shortly.
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APPENDIX

A. ON THE PT REPRESENTATION OF A PERIODIC FIELD IN CARTESIAN COORDINATES

Here we will plainly expound why a special treatment is needed in a PT representation in a Cartesian coordinate

system when the magnetic field is periodic in two directions spanning a toroidal field surface. Our account here is a

readable revision of previous studies (e.g., Schmitt & von Wahl 1992, and references therein).

Consider a magnetic field periodic in x and y with wavelengths (periods) λx and λy, respectively. Taking ξ = z, we

have

Bx = − ∂

∂x

(
∂Φ

∂z

)
− ∂Ψ

∂y
, (A1)

By = − ∂

∂y

(
∂Φ

∂z

)
+
∂Ψ

∂x
. (A2)

We may define two vector fields F and G such that

F = Fxx̂ + Fyŷ = Ψx̂ +

(
−∂Φ

∂z

)
ŷ , (A3)

G = Gxx̂ +Gyŷ =

(
∂Φ

∂z

)
x̂ + Ψŷ . (A4)

Note that F and G are also periodic in x and y. We can then write

Bx = ẑ · (∇× F ) , (A5)

By = ẑ · (∇×G) . (A6)

We consider a 2D rectangular domain Sz = {(x, y, z)|0 ≤ x ≤ λx, 0 ≤ y ≤ λy} and apply Stokes’ theorem to have∫
Sz

BxdSz =

∮
∂Sz

F · dr , (A7)∫
Sz

BydSz =

∮
∂Sz

G · dr . (A8)

In the line segments x = 0 and x = λx, F (x, y, z) or G(x, y, z) is the same, but dr is in the opposite direction. The

same is true for the line segments y = 0 and y = λx. Thus, the contour integrals should be zero. However, the surface

integrals may not be zero even if B is periodic. Such a field cannot simply be expressed in the form of equations (A1)

and (A2). In such cases, we define the following functions of z only

B0x(z) =
1

λxλy

∫
Sz

Bx dSz , (A9)

B0y(z) =
1

λxλy

∫
Sz

By dSz . (A10)

Then, the surface integrals of Bx − B0x and By − B0y are zero, and only B − B0xx̂− B0xx̂ can be expressed by the

standard PT representation in the form of equations (A1) and (A2).

A similar argument applies to Bz given by equation (28). Applying the divergence theorem to the 2D domain Sz,

we have ∫
Sz

BzdSz =

∮
∂Sz

∂Φ

∂n
dl , (A11)

in which dl = |dr|. For Φ periodic in x and y, the contour integral is zero, but the surface integral of Bz may not be

zero even if Bz is periodic. We then define

B0z =
1

λxλy

∫
Sz

Bz dSz . (A12)
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Note that B0z is not a function of z, but a constant owing to the constraint ∇ ·B = 0 combined with the periodicity

of B in x and y.

To sum up, a magnetic field B periodic in Cartesian coordinates x and y is generally expressed as

B = ∇× (ẑ ×∇Φ) + ẑ ×∇Ψ + B0 , (A13)

in which

B0 = B0x(z)x̂ +B0y(z)ŷ +B0zẑ (A14)

is so called a “mean flow” (Schmitt & von Wahl 1992). When periodic boundary conditions are explicitly imposed in

two Cartesian coordinates, one should consider the mean flow. Since we do not employ a periodic boundary condition,

a mean flow is not a consideration in our paper.

B. ON OUR EARLIER VARIATIONAL NLFFF CODE IN VECTOR POTENTIAL FORMULATION

Before the NLFFF code based on a PT representation, we had developed and used a variational NLFFF code using

a vector potential formulation of magnetic field. Since this code is based on a magnetofrictional method (Chodura &

Schlüter 1981), the algorithm is as simple as

∂A

∂t
= −ν(r, t)J⊥ , (B15)

in which t is a pseudo-time, ν(r, t) a proper coefficient maxizing the convergence rate, and J⊥ = B × (J ×B)/B2.

To expedite the convergence, we equip the code with a gradient descent algorithm (Chodura & Schlüter 1981). When

a vector potential A is used to describe the magnetic field, we cannot set all three components of A at z = 0 fixed

in order to impose Bz and Jz there. In a magnetofrictional code by Roumeliotis (1996), Az(x, y, 0) was set fixed and

Ax(x, y, 0) and Ay(x, y, 0) were varied at every time-step. In our variational code, we set Ax(x, y, 0) and Ay(x, y, 0)

once for all to fix Bz(x, y, 0) and the solution of the following 2D Poisson equation is given as Az(x, y, 0) at every

time-step,

∇2
xyAz|z=0 = −Jz,obs +

[
∂

∂z
∇ ·Axy

]
z=0+

, (B16)

in which Jz,obs is the boundary condition of Jz derived from an observation and the z-derivative is evaluated using a

one-side finite differencing. The computed Jz(x, y, 0) is thus equated with Jz,obs at every time-step. Our variational

code is working very well for moderately sheared fields (e.g., Low & Lou 1990), but shows a little weakness for magnetic

fields with flux ropes as with other variational codes. This motivated us to devise the new formulation presented in

this paper, in which the imposition of the bottom boundary condition is tidy and effective.
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